www．tran．at

Combi－Decoder SL75
 for N／TT \＆small HO／OO

Translation to English and annotation by YouChoos（www．youchoos．co．uk）

Technical data and installation

Track voltage DCC	$8-21 \mathrm{~V}$
Maximum continuous current to motor	0.6 A
Maximum peak current to motor 5sec	1.2 A
Maximum continuous current aux．functions	250 mA each
Maximum total current all aux．functions	0.8 A
High frequency motor control	32 kHz or 16 kHz
Low frequency motor control	$30-150 \mathrm{~Hz}$
Dimming frequency	1.2 kHz
Maximum continuous output sounds	11 kHz or $22 \mathrm{kHz} 1 \mathrm{~W} / 8 \mathrm{Ohm} 16-\mathrm{bit}$
Maximum sound memory capacity at $11 \mathrm{kHz}, 16$ bit（mono） $16 \mathrm{Mbit}(2 \mathrm{Mb})$	170 seconds
Operating temperature	-10 to $90^{\prime} \mathrm{C}$
Dimensions	$\mathrm{L}^{*} \mathrm{~W} * \mathrm{D} 24 / 9 / 3.3 \mathrm{~mm}$

Connection of the SL75

View from above

$$
⿰ 亻 ⿱ 丶 ⿻ 工 二 十 ⿴ ⿱ 冂 一 ⿰ 丨 丨 丁 心
$$

ORANGE－motor right GREY－motor left BLACK－track left RED－track right WHITE－FO front light YELLOW－FO rear light

Notes on Installation and Programming

Hard Reset: CV1=0 resets all CVs to factory setting, depending upon the setting of CV109.
Speaker Impedance: The connected loudspeaker must have an impedance of 8 Ohm , such as the speaker supplied with the decoder. Speakers with lower impedance must have a resister connected in series with the loudspeaker giving a combined resistance of 80 hm .
Reed Switch: For use of a Reed Contact for sychronised steam stroke, the Reed Contact 1 should be connected to the positive function output (BLUE).

Some DCC systems only support limited CV addressing from 0-99, such as Roco Lokmaus. Therefore programming of CV-values above 99 is not directly possible. The SL51-4 offers a solution to this problem by setting CV53=1 the following CV that is being programmed will get 100 added, and similarly, setting CV53 $=2$ means that the following entry will get value starting at 200. For setting of values from 0-99, CV53 must be set to 0 .

The quiescent current (under no load) of the decoder is approximately 10 mA , this is caused by the audio amplifier. Therefore it is normal for the decoder to produce some heat even under no operation. During operation, it is usual to expect a temperature of around $70^{\prime} \mathrm{C}$.

The SL75 behaves as a NRMA-compliant decoder during running on the main. For programming including acknowledgement and read-back of CV values, it may be necessary to disconnect the speaker.

The SL75 is best suited for use in N scale locos. However, it will also function ok in smaller OO/HO models. Signs that the decoder is working beyond its limits generally manifest themselves by functions/sounds not responding to requests. For example, a whistle sound may be requested, but this is not actioned. In general this will only occur when the loco is running fast and therefore does not have the power to receive and action requests cleanly. It should not cause damage to the decoder, although this cannot be guaranteed.

Understanding and Calculating Binary Values

In order to successfully understand and program some CVs, you will need a basic understanding of binary. Each CV contains what is called a byte of information. This is computer-speak for 8 bits of information, each of which can be ON or OFF. A bit is therefore a toggle, ON or OFF. A 1 represents ON and a 0 represents OFF. If you have just 1 bit, then you can have a maximum of 2 values. Adding more bits means you can have more combinations, for example, 2 bits gives you 4 possible combinations: OFF+OFF; OFF+ON; ON+OFF; ON+ON, or 0,$0 ; 0,1 ; 1 ; 0 ; 1 ; 1$. Read this as $0,1,2,3$ since computers always start at 0 instead of 1 . By convention, bits are read with the least significant to the right i.e. "bit 0 " is the right-most bit. A byte, as mentioned previously has 8 bits, so bits 0 to 7 , giving a possible range of $0-255$ ($2 \wedge 8-1$ being the maximum value, 256 combinations). Use the table below for reference to see what value each bit can represent.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
128	64	32	16	8	4	2	1

An example: if bit 6 is ON and bit 1 is also on, then this is $64+2$, so the value represented is 66 . Simple really!

Many of the CVs in your decoder use individual bits to control different aspects, so it is useful to understand binary in order to a) work out how the decoder is currently configured, and b) to understand how to modify the CVs to change the decoder's behaviour.

Configuration Table (CVs)

The table below is a translation of the original CT Elektronik document, plus some notes on usage and experiences by YouChoos. It is not intended to be exhaustive, particularly in those areas not utilised by YouChoos, such as coupling, LGB engines, or Zimo systems features.

CV	Explanation	Default	Range
1	Locomotive address: For short addresses when CV29 Bit 5 is set at 0.	3	$1-127$
2	Starting voltage: Voltage to motor at speed step 1. Tune this if your motor requires a little more umph to get it going, or you may find that the start-off sounds are not totally synchronised with the actual phsyical moving off of the loco.	3	$0-255$
3	Rate of acceleration - adjust to affect the inertia effect of speeding up. Set to 0 if you want no inertia effect - you control the speed immediately with your controller instead.	4	$0-255$
4	Rate of deceleration - similar to the above CV3, but for slowing down	4	$0-255$
5	Maximum speed: 0 for no artificial limit (maximum 255 has same effect as 0)	0	$0-255$
6	Middle speed: together with CV2 and CV5 a three-point speed curve can be set. Set CV6 $=0$ to give a linear speed curve.	0	$0-255$
7	Version Number - read-only	-	117
8	Manufacturer ID: CT Elektronik=117 - read-only	$0-255$	

9	Motor PWM: 13-63 stepless from $30-150 \mathrm{~Hz}$, 141-191 16kHz for coreless and bell anchor motors	134	$\begin{aligned} & \hline 60-63 \\ & 134-191 \\ & \hline \end{aligned}$
13	Analog mode: Use bits 0-3 to determine which function outputs (1-4) are switched on when operating on DC.	0	0-255
17+18	Extended address: CV29 bit 5 must be set in order to use a long address. CVs $17+18$ are used to specify the long address. Please refer to NMRA standards for how this value is calculated.	0	128-10240
19	Multi-Unit (Consist) address	0	1-127
29	Miscellaneous configuration bits: Bit 0 (1) - Direction: OFF=normal; ON=inverted Bit 1 (2) - Speed steps: OFF=14/27; ON=28/128 Bit 2 (4) - Operating mode: OFF=digital only; ON=DC and Digital Bit 3 (8) - not used Bit 4 (16) - Speed curve: OFF=default speed curve using CVs 2, 5 \& 6; ON=free speed curve using CVs 67-94. Bit 5 (32) - Address selection: OFF=1-127 (uses CV1); ON=128-10240 (uses CV17+18) Bit 6 (64) - not used Bit 7 (128) - not used	2	0-255
30	Error diagnosis: 1=motor; 2=light; 3=both short-circuit	0	0-3
33-42	Function mapping: according to NMRA for F0-F7, CV33-42=0. Please refer to CT extended function mapping document for more information.		0-255
43-46	Function mapping: according to NMRA for F8-F11 CV43-46=0. Please refer to CT extended function mapping document for more information.		0-255
49	Configuration bits for sound: CV49=0 gives 4 cylinder steam engine Bit 0 (1) - set if you use a Reed switch for wheel synchronising for steam engines - see also CV133=number of Reed Contacts - pulses per stroke e.g. CV133=1 means 1 stroke/pulse Bit 1 (2) - set for Diesel or Electric loco Set both Bits 0 \& 1 (value 3) for diesel and electric sounds that use Sound Slots 00 to 11 (must all be filled with sounds) - this is deprecated by the use of the AUTO sound slots (also known as Slots 1000-3000), so is not recommended. Bit 2 (4) gives 2 cylinder steam Bit 3 (8) gives 3 cylinder steam Bit 4 (16) - no steam strokes during downhill/deceleration (only idle sound) Bit 5 (32) - evaluate the LGB pulse from F1 Bit 6 (64) - play no sound between stand-still and running e.g. whistle (Slots 21-23 and Slots 24-26) Bit 7 (128) - no sound between running and stand-still e.g. brakes (Slots 27-29 and Slots 30-32)	0	0-255
50	EMF intensity: how strong is EMF effect: $0=$ no influence; $255=$ maximum. If you plan to use locomotives in a consist then use a lower value. This reduces the effect of locos working against each other if they cannot be configured to perform equally. Combine this value with CV51 and CV52 to cater for different motor types - often very smooth running can be achieved by experimenting with these values, even on motors that are apparently jerky to begin with under DCC.	255	0-255
51	P-Value: optimises EMF characteristics. Modify this to adapt to specific motor requirements (proportional part).	80	0-255
52	I-Value: optimises EMF characteristics. Modify this to adapt to specific motor requirements (integral part).	40	0-255
53	For Roco Lokmaus users and any other systems which can only address CVs up to 99 . Set bits 0 or 1 to address CVs over 99. Not necessary on most DCC systems. CV53=66: programming and feedback off CV53=77: programming and feedback on CV53 $=1$: $100+$ programmed CV value CV53 $=2$: $200+$ programmed CV value	0	0-255
54	PWM for function output: specifies the level of dimming applied to any function output with dimming selected via CV 57. Note that any function outputs with dimming switched on have the same dimming level applied - they are not individually dimmale by different amounts. Useful for reducing brightness of lights, or level of smoke generator for example. CV54=50 means 50% power output on function.	50	0-100
55	PWM for decoupler: represents the holding current for the decoupler i.e. the reduced power for holding after the uncoupling impulse	32	0-100
56	Decoupler pulse time: how long is the impulse on the decoupler with full power until it is reduced to the value defined in CV55. Time is set in 0.1 second units.	60	0-255
57	Dimming mask: turns dimming (level defined in CV54) on and off for each function output. Each bit represents one function output, up to 4 functions (bits $0,1,2$ and 3).	0	0-255
58	Dimming mask for decoupler function: defined which outputs should have that function enabled. Each bit represents one function output.	0	0-255
59	Signal controlled speed: "L" only available in ZIMO environment	168	0-255
60	Signal controlled speed: "U" only available in ZIMO environment	84	0-255
61	Signal controlled acceleration reaction time: only available in ZIMO systems	1	0-255
62	Braking threshold: indicates the number of speed steps that need to be reduced at a rate of per 100 msec in order for the rapid braking noise to trigger (Sound Slots 120 to 122). If the sounds are in three parts, the middle section is played in a loop until the delay is over.	10	0-255
64	Reference voltage: EMF $100=20 \mathrm{~V}$ track voltage	100	0-255
67-94	Free speed curve: activated with CV29 bit 4 is set. Default values: $9,18,27,36,45,54,63,72,81,90,99,108,117,126,135,144,153,162,171,180,189,198,207,216$, 225, 234, 243, 252		0-252
96	Zimo Signal controlled speed : "FL" speed selected between F-L (or MX9 HLU) is in version 52, see CV59, 60	212	0-255
97	Zimo Signal controlled speed : "LU" speed selected between L-U (or MX9 HLU) is in version 52, see CV59, 60	126	0-255
98	Zimo Signal controlled speed : "U-Stop" speed selected U-Stop (or MX9 HLU) is in version 52, see CV59, 60	42	0-255
104	Threshold braking end: braking sequences, CV104 = 50 brake sequence is between 25 to 24 of running outsourced (?). CV104 $=0$, the sequence of the brake is automatic depending on the sequence of the brake adapted (?) (valid from SW Version 100) See also to CV62, CV107 - unsure of exact effect	0	0-255
105	User CV: free for remembering purchase date or similar user information	0	0-255
106	User CV: free for remembering purchase date or similar user information	0	0-255
107	Break threshold: triggering of break sequence sounds (Slots 27-29 and 30-32). CV107=50 gives break sounds when speed steps $25-24$. CV107 $=0$ gives break sounds when speed steps 1-0 (recommended - for example, final braking	0	0-255

	sounds where loco comes to an actual standstill). See also CV 177 for trigger to rapid acceleration sound.		
108	Bitmask for enless manual sound: ONLY operational when CV49 bit 5 is set. For use with LGB pulse chains. Bit 0 for sound 1; bit 1 for sound 2 etc.	0	0-255
109	Selection of $C V$ set: bit $0=0$ gives $C V$ set 1 ; bit $0=1$ gives $C V$ set 2 . Can be used for various purposes $-C V$ set for home layout + CV set for club layout for example. Hard reset will only affect the currently selected CV set. CV109 will be unchanged by a hard reset.	0	0-1
110	Load-dependent sound variation: set to 0 to give no load-dependent variation; then a range from 1 (high dependency) to 15 (low dependency on load). If configured carefully, this feature can be used to detect a heavy train, or unhill climbs and cause the sound (chuffs for steam) to use the 'acceleration' sounds under that load. However, beware using an excessive value here will cause the train to produce unnecessarily loud chuffs at unwanted time e.g. travelling around a curve.	4	1-15
111	Intensity of acknowledgement pulse (ACK): improves the programming capability, 128 is approx 50% of max acknowledgement pulse (motor dependent) $200=$ normal.	255	0-255
112	Random sounds at standstill: chooses which sounds may occur randomly while idling. Set to 0 for no random sounds at standstill or set bits 0-7 to control which sounds are included in random play (Effects 1-8). See also CV131. It is not possible to specify sounds 9-16 for random play.	255	0-255
113	Random sounds during motion: chooses which sounds may occur randomly while the loco is moving. Set to 0 for no random sounds while moving or set bits 0-7 to control which sounds are included in random play (Effects 1-8). See also CV131. It is not possible to specify sounds 9-16 for random play.	255	0-255
114	PWM for effects - some of the lighting effects pulse between a high point and a low point. This CV specifies the level of the low point in those cycles. See also CV154 to 161.	0	0-100
115	Effects of break duration: duration between 2 effects	0	0-255
116	Shunting function (yard mode) configuration (shunting mode may be switched on/off via appropriate function mapping - see CT extended function mapping document for more information): Only active if bit0-bit2 set Bit 0 (1) - effects of CV3 and CV4 are disabled when shunting mode activated Bit 1 (2) - maximum speed is halved Bit 2 (4) - reverse is 65% of maximum speed (regardless of shunting mode) - applies from SW Version 40 or later Bit 3 (8) - brakes with diode 4:1 is active - see also CV 162 Bit 4 (16) - brakes without diode Bit 5 (32) - not used, must always be 0 Bit 6 (64) - means that the "Rangierfunktion" acts as a command button that is, that the automatic train control system (brake or diode and HLU) - (equivalent to the MAN key = manual) Bit 7 (128) - short burst of idling, returning to normal speed	0	0-255
117	Defines the Function key that causes dimming effect to be applied. 1=F1, 2=F2 ... 12=F12. See also CV118 and CV119.	0	1-12
118	Mask for dimming when activated by function key (see CV 117). Each bit represents 1 function ouput ($0-3$). $1=$ white wire, $2=$ yellow wire, $4=$ green wire, $8=$ purple wire.	0	0-255
119	PWM dimming for dimming caused by function key (see CV $117+$ CV 118). Dimming level $50=$ approximately 50% of full brightness, $100=100 \%$ i.e. no dimming. 0 also means no dimming.	0	0-100
120	Cycle duration of effect: defines how long one effect will last	0	0-255
121	Volume for main sound on. Values depend upon software version: Old versions have range 0-3 only (0 gives no sound, 3 gives maximum volume). Newer versions have range 0-63 (63 being maximum). Expect that future versions may range from 0-255.	63	0-63
122	Volume \& Repetitions for sound effect 1 (Slots 37-41): bits 0-1 specify volume; bits 2-4 for number of repetitions of middle sound (Slot 39); bits 5-7 define number of repetitions of sound effect overall. If the 'Alternate' sounds are activated, this applies to sound effect 9 instead (Slots 77-81)	3	0-255
123	Volume \& Repetitions for sound effect 2 (Slots 42-46): bits 0-1 specify volume; bits 2-4 for number of repetitions of middle sound (Slot 44); bits 5-7 define number of repetitions of sound effect overall. If the 'Alternate' sounds are activated, this applies to sound effect 10 instead (Slots 82-86)	3	0-255
124	Volume \& Repetitions for sound effect 3 (Slots 47-51): bits 0-1 specify volume; bits 2-4 for number of repetitions of middle sound (Slot 48); bits 5-7 define number of repetitions of sound effect overall. If the 'Alternate' sounds are activated, this applies to sound effect 11 instead (Slots 87-91)	3	0-255
125	Volume \& Repetitions for sound effect 4 (Slots 52-56): bits 0-1 specify volume; bits 2-4 for number of repetitions of middle sound (Slot 54); bits 5-7 define number of repetitions of sound effect overall. If the 'Alternate' sounds are activated, this applies to sound effect 12 instead (Slots 92-96)	3	0-255
126	Volume \& Repetitions for sound effect 5 (Slots 57-61): bits 0-1 specify volume; bits 2-4 for number of repetitions of middle sound (Slot 59); bits 5-7 define number of repetitions of sound effect overall. If the 'Alternate' sounds are activated, this applies to sound effect 13 instead (Slots 97-101)	3	0-255
127	Volume \& Repetitions for sound effect 6 (Slots 62-66): bits 0-1 specify volume; bits 2-4 for number of repetitions of middle sound (Slot 64); bits 5-7 define number of repetitions of sound effect overall. If the 'Alternate' sounds are activated, this applies to sound effect 14 instead (Slots 102-106)	3	0-255
128	Volume \& Repetitions for sound effect 7 (Slots 67-71): bits 0-1 specify volume; bits 2-4 for number of repetitions of middle sound (Slot 69); bits 5-7 define number of repetitions of sound effect overall. If the 'Alternate' sounds are activated, this applies to sound effect 15 instead (Slots 107-111)	3	0-255
129	From SW version 40 onwards CV 129 has this meaning: Volume \& Repetitions for sound effect 8 (Slots 72-76): bits 0-1 specify volume; bits 2-4 for number of repetitions of middle sound (Slot 74); bits 5-7 define number of repetitions of sound effect overall. If the 'Alternate' sounds are activated, this applies to sound effect 16 instead (Slots 112-116) Note that it is not possible to individually control the volume or looping of sound effects 9-16 (Slots 77-116) - they take on the settings for the equivalent effect in sounds 1-8. Prior to SW version 40, CV 129 had the following meaning: Strong time when the sound after acceleration is being strongly reduced (0.5 second units), valid for sounds in Slots 0 3 (this has moved to CV 146 from SW Version 40 onwards)	3	0-255
130	Weak time when the sound after braking is being slightly reduced (0.5 second units), valid for sounds in Slots 8-11.	4	0-255
131	Random time: minimum time between 2 random sounds (0.5 second units)	20	0-255
132	Stroke Base-H: Time between 2 speed strokes at full speed	100	0-255

133	Stroke Base-L: time between two steam strokes for logical speed step 1 in seconds. Constant $K=1476 /$ time ($153=\sim 9.6 \mathrm{sec}$) Example 1: 20 seconds wanted, so $K=1476 / 20=73.8$ rounded to 74 gives CV133 $=74$, CV134 $=0$ Example 2: 3 seconds: $C=1476 / 3=492$. Since $K>256$ we need to use 2 bytes, so split low byte and high byte: CV134 = K / 256 (not rounded, but cut a comma) $492 / 256=1.927875$ CV134 $=1$, CV133 $=$ K $-($ CV134 * 256) $=492$ - $(256$ * 1$)=236$	153	0-255
134	Time between steam strokes: the time between 2 steam strokes at logical speed step 1 in seconds (see CV133). High byte is set in CV134	0	0-255
135	Frequency min: reduces the pitch of chuffs or engine sounds at lower speed steps. 128 is default pitch (sounds played as originally recorded). Use this CV along with CV136 to define how engine pitch or chuff pitch increases with the speed of the loco.	128	0-255
136	Frequency max: increases the pitch of chuffs or engine sounds at higher speed steps. 128 is default pitch (sounds played as originally recorded).	128	0-255
137	Special CV Bit 0 (1) - OFF = 8 functions, $\mathrm{ON}=14$ functions (MAN-bit) refers to F0-F12, btw CV33-CV46 free assignment. Bit 1 (2) - ZIMO train number impulse on / off Bit 2 (4) - strong / normal / weak switched with F1, effective only when CV110 is active, and dimmable via CV54 Bit 3 (8) - strong / normal / weak switched with F2, effective only when CV110 is active, and dimmable via CV54CV137 Bit 4 (16) - ZIMO speed contrl - dependent train control $0=$ off $1=$ on Bit 5 (32) - Start sequence (Sound Slots 21-23) is played before motor starts to spin - useful for diesel engines in particular as a rev-up sound before phsyically setting off Bit 6 (64) - Set ON if you want to control additional functions using F4 - press twice for F5, 3x for F6, 4x for F7 (useful if your controller does not have access to many functions directly) Bit 7 (128) - 32 kHz frequency motor control from software version 41 , factory Bit7 $=016 \mathrm{kHz}$	0	0-255
138	Break time (HLU): break delay for HLU section (for ZIMO systems only)	3	0-255
139	Short-circuit threshold 1: direct cut-off at overload of function outputs	15	0-255
140	Short-circuit threshold 2: fast cut-off at overload of function outputs	12	0-255
141	Short-circuit threshold 3: slow cut-off at overload of function outputs	10	0-255
142	Short-circuit threshold 1: direct cut-off at overload of motor output	90	0-255
143	Short-circuit threshold 2: fast cut-off at overload of motor output	80	0-255
144	Short-circuit threshold 3: slow cut-off at overload of motor output	70	0-255
145	Activation of sound looping - if the corresponding sound function is activated, it will first play its $1^{\text {st }}$ and $2^{\text {nd }}$ Slots. After that, Slot 3 is repeated until the feature is turned off. After requesting off, it plays closing $4^{\text {th }}$ and $5^{\text {th }}$ Slots. Bit 0 (1) - for looping of Sound 1 (Slots 37-41) Bit 1 (2) - for looping of Sound 2 (Slots 42-46) Bit 2 (4) - for looping of Sound 3 (Slots 47-51) Bit 3 (8) - for looping of Sound 4 (Slots 52-56) Bit 4 (16) - for looping of Sound 5 (Slots 57-61) Bit 5 (32) - for looping of Sound 6 (Slots 62-66) Bit 6 (64) - for looping of Sound 7 (Slots 67-71) Looping for Sound effects 8-16 cannot be configured - they are not looping.	0	0-255
146	Up to SW Version 39 CV146 had this meaning: CV146 = 1 means: Z3 (switching function) is connected with F7, 0 means inactive Z3 CV146 = 2 means: Z4 (switching function) is switched with F8, 0 means inactive Z4 CV146 $=4$ means: Sound3 is connected with F7, 0 means inactive Sound3 CV146 $=8$ means: Sound4 is connected with F8, 0 means inactive Sound4 CV146 = 16 means: Z5 (switching function) is switched with F9, 0 means inactive Z5 CV146 = 32 means: Z6 (switching function) is switched with F10, 0 means inactive Z6 CV146 $=64$ means: Sound5 is connected with F9, 0 means inactive Sound5 CV146 $=128$ means: Sound6 is connected with F10, 0 means inactive Sound6 From SW Version 40 onwards, CV146 has the following meaning (used to be in CV129): Strong time: time after strong acceleration (0.5 seconds units) applies to sounds in Slots 0-3	12	0-255
147	Discharge of the coupling: a kickback effect causing the locomotive to run backwards slightly - a tiny jerk of the motor to achieve uncoupling.	20	0-126
148	Away from wagons: speed when driving away from wagons, locomotive runs in the current direction, $126=$ max. Speed under. Take into account the time set in CV3.	50	0-126
149	Discharge time: the time for the unit pushed back. 0.1 seconds, $10=1$ seconds	10	0-255
150	Drive away: the time for driving away unit 0.1 seconds, $30=3$ seconds	30	0-255
151	Selection of automatic disconnection: $0=0 \mathrm{ff}, 1=\mathrm{F} 12=\mathrm{F} 23=\mathrm{F}, 4=\mathrm{F} 4$, etc.	0	1-12
152	Uncoupling mask forwards: Select the function to be used, $4=\mathrm{F} 2,8=\mathrm{F} 3,16=\mathrm{F} 4,32=\mathrm{F} 5,64=\mathrm{F6} 128=\mathrm{F7}$	8	0-255
153	Uncoupling mask backwards: Select the function to be used, $4=$ F2, $8=F 3,16=F 4,32=F 5,64=$ F6 128 $=$ F7	8	0-255
154	Lighting effect for front light (output 0 white wire): 0 - No effect 1 - Flashing 2 - Flash-pull 3 - Single pulse strobe 4 - Double Flashing strobe 5 - Headlight (brightness between maximum and PWM value in CV 114) 6 - Ditch light left (brightness between maximum and PWM value in CV 114) 7 - Ditch light right (brightness between maximum and PWM value in the CV 114) 8 - Rotary beacon (brightness between maximum and PWM value in the CV 114) 9 - Gyralite (brightness between maximum and PWM value in the CV 114) - can also be used for firebox glow 10 - Mars light 11 - Soft-start 12 - Brake sparks (short flash activated only when the loco comes to a stop) For output when forward only, add 64 to the above value e.g. $1+64=65$ flashing on Forward only. For output when in reverse only, add 128 to the above value e.g. $1+128=129$ flashing on Reverse only. If neither 64 nor 128 is added, it is assumed that the effect should be active for both forwards and reverse. CVs 155-161 provide the same effects for each of the other function outputs.	0	0-255

155	Lighting effect for function output 1 (yellow wire) - see CV154	0	$0-255$
156	Lighting effect for function output 2 (green wire) - see CV154	0	$0-255$
157	Lighting effect for function output 3 (purple wire) - see CV154	$0-255$	
158	Lighting effect for function output 4 (solder pad) - see CV154 (only on SL51-4)	0	
159	Lighting effect for function output 5 (solder pad) - see CV154 (only on SL51-4)	0	
160	Lighting effect for function output 6 (solder pad) - see CV154 (only on SL51-4)	0	$0-255$
161	Lighting effect for function output 7 (solder pad) - see CV154 (only on SL51-4)	0	$0-255$
162	Sensitivity of the diode voltage: see also CV116. Value of 10-20 is generally well tolerated, the smaller the value the more sensitive.	$0-255$	$0-255$
$163-176$	Extended function mapping: Please refer to CT extended function mapping document for more information.	$0-255$	0
177	Trigger for rapid acceleration: indicates the number of speed levels that must be attained within any 100 msec period in order to trigger the sound in Slots 123-125). If the sounds are in three parts, the middle part is played in a loop until the requested speed is reached. See also CV 107 for trigger to rapid braking sound.	0	$0-255$

Safety Disclaimer

Not suitable for children under three years of age because of the danger of their swallowing the small constituent pieces. Improper use can result in injury from sharp edges. For use only in dry areas. CT reserves the right to make changes in line with technical progress, product maintenance or changes in production methods. CT accepts no responsibility for error that may occur of use of transformers or other electrical equipment that is not authorised for use with model railways or transformers and other electrical equipment that has been altered, adapted or are faulty. Nor can we accept responsibility for damage that results from unsupervised adjustments to equipment or from acts of violence or from overheating or from effects of moisture etc. Furthermore in all such cases the guarantee becomes invalid.

The SL75 is NOT delivered mounted in protective tubing - this is to reduce overall size. Fit the decoder using double-sided adhesive tape. There should be no contact between metal parts such as locomotive chassis or housing and the decoder. Insulate all metal parts with insulation tape so that short-circuit is avoided. Never cover the decoder with insulation tape as this will reduce the air circulation around the decoder which could harm it. Never touch the decoder when it is under power as this may damage both the software or hardware of the decoder.

